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A B S T R A C T

More resilient and sustainable approaches are urgently needed to minimize crop yield losses resulting from pest
activity and reduce impacts of pest management on human health and the environment. Increasing im-
plementation of biological approaches, including biological control, biopesticides, biostimulants and pher-
omones is a mutual high priority for sustainable agriculture leaders and practitioners, including those working in
organic agriculture and Integrated Pest Management (IPM). While market and regulatory forces, and pest re-
sistance to conventional pesticides are contributing to growth in implementation of biological approaches, they
remain a very small percentage of the overall global crop protection portfolio. Barriers to greater adoption
include many of the same barriers to adopting IPM techniques or transitioning to organic. Improved awareness
and understanding of the histories and benefits of organic and IPM, goals and priorities shared by organic and
IPM proponents and practitioners, and opportunities for accelerating adoption of biological approaches have
potential to improve our combined effectiveness in overcoming these barriers. Strategies to speed adoption
include increased education and extension on proven, ready-to-use biological control options; full cost and
benefit accounting for biologically-based alternatives to chemical controls; and public and private sector policies
to encourage biological control and reduce reliance on chemical controls. Both the organic and IPM communities
of practice stand to gain from collaboration on common interests and goals.

1. Introduction

World population continues to increase and needs to be fed by a
global ecological system under stress. As a result, there is expanded
interest in a productive and ecologically sound agriculture that grows
healthy food while protecting environmental integrity for future gen-
erations. Not all technologies that increase productivity are free of
negative impacts on long-term sustainability. For these reasons, there is
a need to develop approaches that are stable, resilient and sustainable
as well as productive.

Resistance to insecticides, herbicides, and other pesticides has led to
increasing application rates, higher crop losses, and mounting costs to
farmers on a pesticide treadmill (Pimentel, 2005; Oerke, 2006; Heap,
2014). Greater pesticide use is increasingly linked to elevated health
risks for exposed populations of farmers, farmworkers, rural popula-
tions, and consumers (Bell et al., 2006; Colborn and Carroll, 2007;
Calvert et al., 2008; Mills et al., 2009; Bergman et al., 2013; IARC,
2014; Mesnage et al., 2014; Myers et al., 2016; Kim et al., 2017).
Pesticides have adverse impacts on soil health, water quality, and

wildlife habitat (Gilliom et al., 2007; Wightwick et al., 2010; Pisa et al.,
2014; Stone et al., 2014; Stehle and Schulz, 2015). Subsidies for specific
commodity crops encourage monocultures and inefficient use of inputs
for their production (Fausti, 2015). The non-market costs of these ad-
verse impacts can only be estimated, but on a global scale they impose a
significant burden (Muller et al., 2017).

Both Integrated Pest Management (IPM) and organic agriculture
offer approaches that reduce reliance on pesticides. Biological control is
an ecologically sound opportunity in both organic and conventional
farming systems and is a key element of IPM, a decision-making process
and suite of science-based tactics used in both systems.

The purpose of this paper is to increase awareness of the common
ground between IPM, organic agriculture, and biological control, and to
communicate mutual priorities and opportunities for collaboration
among researchers, educators, consultants, and farmers working in
organic systems and IPM.

Biological control is a form of “ecologically based pest management
that uses one kind of organism (the ‘natural enemies’) to control an-
other (the pest species)” (Hoddle and Van Driesche, 2009). Natural
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enemies include parasitoids, predators, entomopathogenic nematodes,
pathogens, competing microorganisms with or hyperparasites of plant
pathogens, herbivores feeding on weeds and weed seeds, competitors
for resources and organisms producing toxins, termed antibiosis or al-
lelopathy (Flint and Van den Bosch, 1981; Hoy, 1994; Flint, 2012;
Heimpel and Mills, 2017). Biological control can be naturally occurring;
foreign agents classically introduced and established; released native or
foreign agents augmenting populations; or conserved or enhanced po-
pulations of native or foreign agents. Augmentative releases can be
inoculative, building a population that is expected to act over genera-
tions, or inundative, where the organisms released are expected to
generate immediate reductions.

More broadly, biological approaches also include pheromones used
for monitoring pest populations and to disrupt mating, sterile insect
releases, and biopesticides which are pesticide formulations made from
living organisms or the products of living organisms. Some biopesticide
definitions include genetically modified plants or organisms other than
plants (US EPA, 2018). Additionally, biostimulants are biological pro-
ducts some of which can reduce the impact of pest activity as a con-
sequence of a complex of constituents or indirect mode of action that
improves plant tolerance to abiotic stresses, and not as a result of the
sole presence of a known plant protective compound acting directly on
pests (Yakhin et al., 2017).

Organic and IPM researchers, educators, and farmers have long
been recognized as pioneers and early adopters of biological control
(US Congress, Office of Technology Assessment, 1995). The world-wide
organic market grew in sales from U.S.$40 billion in 2006 to U.S.$90
billion in 2016 (Willer and Yuseffi, 2007; Willer and Lernoud, 2018).
The U.S. is the largest national market for organic food in the world,
with a 48% share of the global market (Willer and Lernoud, 2018).
Between 2006 and 2016, sales of certified organic product in the U.S.
grew from under U.S.$15 billion to over U.S.$40 billion in 2016
(Greene, 2017). Increases in sales have greatly outstripped the growth
of land in organic production in the U.S., which grew from 1.7 million
to 2.0 million hectares between 2008 and 2016 in the U.S., compared
with growth from 30.6 million to 57.8 million hectares world-wide
(Willer and Yussefi, 2007; USDA/NASS, 2010, 2017; Willer and
Lernoud, 2018). The growth of the organic market has led to the
adoption of organic methods by more farmers on more land, although
growth has been slowing in recent years. It is more difficult to estimate
IPM adoption rates, given that there is no single, ongoing program or
standardized approach, but rather periodic and often disparate assess-
ments (Vandeman et al., 1994; Jasinski and Haley, 2014; USDA CEAP,
2017). Assessment tools have included surveys and sets of crop- and
region-specific IPM Elements or Guidelines to assess the extent to which
available specific IPM tactics have been adopted (Boutwell and Smith,
1981; Green and Petzoldt, 2009). A directory of crop- and region-spe-
cific IPM tactics lists and assessment tools is maintained by the U.S.
Department of Agriculture (USDA) IPM Centers (2018).

2. Origins of organic agriculture

Organic agriculture developed as a response to the negative health
and environmental impacts caused by modern chemical technology
(Steiner, 1924; Balfour, 1943; Howard, 1947; Rodale, 1948). Efforts to
legitimize and popularize organic techniques were met with contempt,
hostility and derision from many in the agricultural establishment,
particularly government agency officials, researchers at publicly funded
universities, conventional farming organizations, and the manu-
facturers of agricultural chemicals. The organic movement in the
United States grew in the 1960s and 1970s as public awareness of the
adverse ecological effects of pesticides increased (Carson, 1962). Var-
ious states, led by Maine, Oregon, and California, passed laws that re-
cognized organic production methods and protected organic food with
truth-in-labeling laws. The USDA undertook its first serious, in-depth
study of organic agriculture in 1980 (USDA Study Team on Organic

Farming, 1980). The USDA’s recognition of organic agriculture was
short-lived, and it soon renewed efforts to stifle organic agriculture
(Youngberg and DeMuth, 2013). Despite efforts to suppress organic
farming, many of the techniques used by organic farmers received re-
newed attention as low-input, sustainable, and alternative agricultural
practices (National Research Council, 1989).

After a period of relative stagnation during the early and mid-1980s,
the market for organic food began to grow rapidly, again driven by
awareness of the risks posed by exposure to pesticides (Sewell and
Whyatt, 1989). Private standards were developed by various organic
farming organizations and the International Federation of Organic
Agriculture Movements, now known as IFOAM-Organics International
(IFOAM, 2014). However, various organized interests around the world
did not consider private standards to be sufficient to prevent fraud and
protect consumers. In the U.S., consumer and environmental groups
concerned about fraudulent claims relative to organic products formed
a coalition with organic farming organizations and the natural foods
industry to call for recognition of organic agriculture and federal reg-
ulation of claims. The result was the passage of the Organic Foods
Production Act as a part of the 1990 Farm Bill [7 USC 6501 et seq.]. The
USDA’s Agricultural Marketing Service (AMS) established the National
Organic Program (NOP) rule following a 12-year process (USDA/AMS/
NOP, 2000, 2019). The European Union established its regulation for
organic agriculture in 1991, which has had subsequent major revisions
(EEC, 1991, 2007, 2008, 2018). Canada established an organic regime
for certification and labeling in 2006 (CAN/CGSB, 2015, 2018a,b).
Several other countries have established their own national standards,
including Japan (JMAFF, 2000, 2017), Korea (KMAFRA, 2011, 2017)
China (CNCA, 2011), and India (APEDA, 2001, 2014).

3. Origins of IPM

Tactics now associated with IPM and organic agriculture have been
used for thousands of years, including some low-risk compounds from
botanical and mineral sources, preserving and encouraging predators
and parasites, resistant varieties and physical removal of unwanted
plants. These types of tactics predominated prior to the rapid growth in
production of synthetic pesticides from less than 22,680 kg in the U.S.
in 1951, to 635 million kg by 1977 (Bottrell, 1979). Over 450 million kg
of conventional pesticides, generally produced from synthetic in-
gredients, were used across all U.S. market sectors in 2012, with just
over 400 million kg of that use in agriculture. All global pesticide use
totaled an estimated 2.6 billion kg in 2012 (Atwood and Paisley-Jones,
2017).

The terms “Integrated Pest Management” and “IPM” first entered
the lexicon in the early 1970s. IPM evolved from the concepts of in-
tegrated control, developed in the 1950s in response to pest populations
resistant to pesticides and pest outbreaks resulting from pesticide im-
pacts on beneficial insects (Stern et al., 1959), and pest management,
where multiple tactics, including monitoring and action thresholds, are
used to keep pest populations below damaging levels. IPM is focused on
pests, but tactics include managing nutrients for optimal plant health
and improving soil health. such as increasing diversity and abundance
of beneficial organisms in the soil.

IPM approaches include those that prevent, avoid, monitor and/or
suppress, ‘PAMS’, (Coble, 2003) all types of insect pests, plant diseases,
weeds, nematodes, vertebrate pests of food and fiber crops, and for
structural, landscape and public health pests in communities. Sup-
pression includes cultural tactics such as cover crops or mulches, phy-
sical methods such as tillage, chemical pesticides and biological con-
trols.

4. Synergies between organic and IPM

Many of the pioneers of IPM practices were organic farmers
(National Research Council, 1989). At the same time, many farmers
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considered IPM to be an essential step of the transition from conven-
tional to organic production. Most organic standards refer to biological
and other non-chemical techniques as the primary means of crop pro-
tection.

The IFOAM standards state that “[o]rganic farming systems apply
biological and cultural means to prevent unacceptable losses from
pests, diseases and weeds” (IFOAM, 2014). Such systems rely on ba-
lanced crop nutrition, biologically active soils, locally adapted rota-
tions, functional biodiversity, habitat management, beneficial organ-
isms, and other practices as the primary means to protect crops. The
standards require organic producers to rely first on biological, cultural,
and mechanical means to manage pests, weeds, and diseases (IFOAM,
2014 §4.5.1). The standards specify variety selection, rotations, inter-
cropping, companion planting, mechanical cultivation, protection of
natural enemies of pests, habitat management, introduction of natural
enemies such as predators and parasites, mowing, mulching, grazing,
and mechanical controls as among the options required. Only if these
practices are not sufficient, a limited number of specific substances can
be used to manage pests, diseases and weeds (IFOAM, 2014 §4.5.2). The
pesticides allowed are limited to those that do not pose a significant
threat to human health or the environment, and meet the principle of
care, otherwise known as the Precautionary Principle (IFOAM, 2014
Appendix 1).

The U.S. NOP rule requires biological, cultural, and mechanical
management practices to prevent pests, weeds, and diseases (USDA/
AMS/NOP, 2000, 2019 §206(a)). The augmentation or introduction of
predators or parasites of pest species is explicitly recognized as an or-
ganic practice (USDA/AMS/NOP, 2000, 2019 §206(b)(1)), as is the
development of habitat for natural enemies of pests (USDA/AMS/NOP,
2000, 2019 §), and non-synthetic controls, such as lures, traps, and
repellents (USDA/AMS/NOP, 2000, 2019 §206(b)(3)). Pesticides are
permitted only when biological, cultural, or mechanical methods are
insufficient to prevent or control the target species, the specific sub-
stance is included in an organic system plan approved by the operations
accredited certification agent, and the conditions for using the sub-
stance are met (USDA/AMS/NOP, 2000, 2019 §206(e)).

Similarly, the E.U. regulation calls for prevention of damage caused
by pests, diseases and weeds to rely primarily on protection by natural
enemies, crop rotations, cultivation techniques, choice of varieties and
species, and thermal processes (EEC, 2007 Article 12 §1(g)). The Ca-
nadian Organic Standards state that “pest, disease and weed control
practices shall focus on organic management practices that enhance
crop health and reduce losses due to weeds, disease and pests (CGSB,
2015, 2018a §5.6.1). Acceptable management includes cultural prac-
tices, and physical and mechanical techniques. The Japanese standard
states that “noxious animals and plants” be controlled by cultivation,
physical, and biological methods, either alone or in combination
(JMAFF, 2000, 2017). Thus, organic agriculture is required in most
places to take a biointensive integrated approach to pest management.

Biopesticides and plant pesticides from genetically modified sources
are excluded from by organic standards in the U.S., Canada and the E.U.
(USDA/AMS/NOP, 2000, 2019 §105(e); EEC, 2007 Article 9; CGSB,
2015, 2018a §1.4a). In the U.S. and Canada, the entire for-
mulation—not just the active ingredients—must comply with the
standards. Non-active or “inert” ingredients used in pesticide formula-
tions approved for organic production are required to be classified as
minimum risk (USDA/AMS/NOP, 2000, 2019 §601(m); CGSB, 2015,
2018b).

In undertaking the transition from conventional to organic, many
producers will use an integrated approach to reduce the amount of
pesticides used (Hill et al., 1999). Getting off the pesticide treadmill,
replacing one pesticide with another as a primary strategy for con-
trolling pests and responding to pesticide-resistant pests, requires a
systems-based approach that relies heavily on biological control (Lewis
et al., 1997).

5. Differences between organic and IPM

Organic and IPM overlap, but the two are not congruent. Organic
agriculture is a system of production that acknowledges the importance
of biodiversity, soil biological activity, and biological cycles (Davies
and Lennartsson, 2005). In the U.S. and in most of the world, “organic”
is a legally protected word that has a set of standards based on practices
that use biologically based approaches to fertility and pest management
for crop production (USDA/NRCS, 2016). IPM has multiple definitions
including “a decision-based process involving coordinated use of mul-
tiple tactics for optimizing the control of all classes of pests (insects,
pathogens, weeds, vertebrates) in an ecologically and economically
sound manner” (Prokopy and Kogan, 2009).

USDA NOP standards require the use of IPM techniques and speci-
fically mandate the use of biologically based pest management [7 CFR
205.206(e)]. Many successful organic farmers practiced IPM and bio-
logical control before transitioning as well.

Most pesticides are prohibited by organic standards. In the U.S.,
non-synthetic active ingredients are allowed if they are not prohibited.
The standards include a relatively short list of allowed synthetic pes-
ticides that were found to meet low-risk criteria that consider effects on
human health and the environment, and compatibility with sustainable
agriculture [7 USC 6518(m)]. Genetic engineering is excluded from
organic production, as are biopesticides and plant pesticides made or
derived from genetically modified organisms [7 CFR 205.105(e)]. One
criticism or concern is that excessive reliance on a few relatively in-
effective pesticides limits options for pesticide rotation and tank-mixed
pesticide combinations. Maintaining the efficacy of the few pesticides
used in organic production requires reliance on non-chemical means as
a first line of defense.

In contrast, there is not a codified national standard for IPM in any
country. However, IPM is mandated by multiple international and na-
tional certification standards in food and fiber production, including
standards established by the Forest Stewardship Council, Rainforest
Alliance, Food Alliance and Protected Harvest, and multiple multi-na-
tional supply chain standards including the Sysco Sustainable
Agriculture Initiative and the Potato Sustainability Initiative (Green,
2009). IPM is also seen as a useful approach for meeting pesticide risk
reduction goals (European Parliament, 2009). Most, but not all of these
standards prohibit specific pesticide uses that would otherwise be
lawful.

6. Biological control in organic farming and food systems

Organic farmers are expected to take an ecological systems ap-
proach to protect crops (Altieri, 1983; Lampkin, 1990; IFOAM, 2005). A
meta-analysis shows that organic farms tend to support greater biodi-
versity than non-organic farms (Bengtsson et al., 2005; Hole et al.,
2005). Organic farmers rely less on pesticides, resulting in lower risks
from pesticide contamination (Baker et al., 2002; Baranski et al., 2014;
Benbrook and Baker, 2014). All pesticides used in organic production
are also permitted for non-organic production. Because pesticides used
in organic production are subject to additional scrutiny for their human
health and environmental impacts, these pesticides, except for Spi-
nosad, are exempt from a food tolerance for residues. Before being
permitted for organic production, botanicals and synthetic pesticides
are reviewed by the National Organic Standards Board for their impacts
on human health and the environment. The botanical insecticide ni-
cotine and the rodenticide strychnine were added to the National List of
prohibited substances for their toxicity and potential hazards to non-
target organisms (USDA/AMS/NOP, 2000, 2019). The insecticide ro-
tenone, which has had registration for all food uses cancelled in the
U.S., was proposed to be prohibited for organic production under the
USDA’s NOP (USDA/AMS/NOP, 2018).

Thus, it stands to reason that organic farmers would be more re-
ceptive to the adoption and use of innovative biological control
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techniques than non-organic farmers. In a survey of producers in the
Western U.S., researchers reported that 83% of walnut producers in
California and 91% of pear producers in the Pacific Northwest with at
least some organic management of their land used biological control
(Goldberger and Lehrer, 2016). These included conservation practices,
such as reducing the use of pesticides that harm natural enemies and
enhancing natural enemy habitat, as well as the augmentative release of
commercially produced natural enemies. These were respectively
compared with 53% and 75% adoption rates of biological control of
non-organic producers of the same crops in the same region. Organic
status was one of the most significant factors of biological control
adoption in the study.

7. IPM and biological control in conventional and organic
agriculture

Major historical biological control successes include introduction of
the vedalia ladybird beetle (Rodolia cardinalis Mulsant) in 1888 to
control cottony-cushion scale (Icerya purchasi Maskell) in California,
eliminating the pest in two years, and introduction of Chrysolina hyperici
(F.) and Chrysolina quadrigemina (Suffr.) in 1945–46, reducing popula-
tions of the invasive St. John’s wort weed (Hypericum perforatum L.)
which is toxic to livestock, to 1% of their original size within ten years
(Flint and van den Bosch, 1981; DeBach and Rosen, 1991).

More recent historical survey and sales data are not specific to
conventional agriculture but include applications in organic production
which represented 1.2% of total global agricultural land in 2016 (Willer
and Lernoud, 2018).

Pest management benefits from conservation biological control are
not well documented but have been estimated at U.S.$4.5 billion an-
nually in 2008 in the U.S. alone (reviewed in Begg et al., 2017). Ex-
amples include apple production in many regions around the world
where pesticide applications for mites are rare due to pesticide product
selection and timing that preserve key beneficials (Hoy, 2016).

In the first national survey of IPM adoption, Vandeman et al. (1994)
reported IPM was used on 50% or more of U.S. cropland, defining IPM
as monitoring pest populations and use of economic thresholds for in-
sect pests, disease and/or weeds, or for corn, rotating corn with other
crops. Adoption ranged from a high of 74% of corn, 72% for potato,
59% for soybean, 52% for all vegetables, to 50% of all fruit and nut
production. The study reported conservation of beneficials on 38% of
all land in vegetables and 22% of land in fall potatoes, and augmen-
tation with beneficials on 3% of all vegetables. Pheromones were used
to control insects on 7% of vegetable and 37% of all fruit and nut land.

From 2003 to 2006, the USDA conducted a series of region-specific
surveys on IPM adoption using a standardized approach. Over a total of
18,188 sample points across twelve regions, beneficial organisms were
released on less than one percent of cropland (USDA CEAP, 2017).
Conservation biological control was not assessed. Biopesticide use was
reported on 6.7% of cropland. Monitoring and thresholds were used on
26% of land in production and crop rotation was used to control pests
on 63% of cropland. Crops were primarily field crops including corn,
soybean, wheat and cotton, with hay, rice, potatoes and barley in some
regions.

Sales data provide additional insights for biological products. For
example, annual biopesticide sales have grown from U.S.$512 million,
representing 2.4% of the crop protection market in 2009 (Marrone,
2009) to U.S.$3 billion annually and 5% of the market in 2017. Sales
are expected to grow at 10–15% per year, with potential to equalize
with the conventional market requiring another thirty years (Damalas
and Koutroubas, 2018). Nearly 90% of the commercially available
microbial biopesticides derive from Bacillus thuringiensis, a tremendous
risk as resistance inevitably expands. van Lenteren et al. (2018) esti-
mate augmentative biological control with invertebrate and microbial
organisms is applied on more than 30 million hectares globally.

Pheromone product sales were approximately U.S.$500 million in

2016 (Dunham Trimmer, 2017). Macroorganism sales, primarily ben-
eficial insects, mites, nematodes, were by far the smallest segment,
primarily sold to greenhouse and other protected production, at less
than U.S.$50 million in the U.S. Koppert, a global leader in macro-
organism sales, generated an estimated U.S.$150 million annual rev-
enues.

8. Motivations and obstacles for adoption of IPM and organic
practices

The adverse impacts of pesticides and their increasing ineffective-
ness are motivating farmers to look at alternative methods to protect
their crops. A frequent first step will be the adoption of biological and
cultural practices, reduction of pesticide applications, and the use of
reduced risk pesticides, and finally a systemic approach based on eco-
logical principles. Such an approach has been called ESR or “Efficiency-
Substitution-Redesign” (Hill and MacRae, 1996). Policies to protect the
environment and human health are expected to drive pesticide reduc-
tion, but experience shows that regulatory approaches do not always
result in the adoption of robust agroecological practices by farmers
(Lamine, 2011).

Organic and integrated methods exist in a global context, but
choices of techniques are driven by local conditions. With globalization
and climate change has come an accelerated introduction of exotic
pests, often with an absence of viable natural enemies (Perrings et al.,
2010; Stoett, 2010; Diez et al., 2012). Biological control continues to
offer a resilient and dynamic solution to dealing with exotic introduced
pests (de Lange and van Wilgen, 2010; Brodeur et al., 2018; van
Lenteren et al. 2018) and it has been suggested that introduced biolo-
gical control agents have the ability to acclimatize to local conditions to
become more effective natural enemies (Heimpel and Mills, 2017).
Organic farmers were also early and widespread adopters of techniques
involving microbial pesticides, such as Bacillus thuringiensis, and the
introduction of hyper-parasites. Another example of hyper-parasitic
biological control is the introduction of a hypovirus to control chestnut
blight in North America in the mid-1900s (Heimpel and Mills, 2017).

Integrated systems research with biological control has taken place
on organic farming systems in Europe and the U.S. going back to the
1970s (National Research Council, 1989; Altieri and Nicholls, 2004;
Wijnands, 2006). Organic and integrated systems are gaining attention
and interest in the international research community (Wijnands et al.,
2018). According to a national survey of U.S. farmers who identified as
transitioning to organic, the adoption of organic practices is driven by
personal and family values more than by marketplace incentives
(Brown et al., 2017). Other factors named by most farmers were con-
cerns about the environment, potential enhancement of farm sustain-
ability, and concerns about human health. Accessing expanding mar-
kets and potential increase in profits were reported by most
respondents, but market-based motives were lower than values-based
ones.

On the other hand, technical barriers to adoption are obstacles.
Weed management was identified as the number one obstacle to or-
ganic transition in a national survey of farmers (Brown et al., 2017).
Organic agriculture faces a yield gap (de Ponti, Rijk and van Ittersum,
2012). This can be at least partially overcome by greater biodiversity
(Ponisio et al., 2015). However, more research, innovation, and tech-
nology transfer are needed to further close the gap (Muller et al., 2017;
Niggli et al., 2017).

Longstanding obstacles to IPM adoption in general are also barriers
to biological control use, including direct costs outweighing direct
benefits to users; poor recognition and accountability for indirect costs
of tactics with greater risks to health and environment; lack of in-
centives to overcome high direct costs to users despite indirect benefits
to the public; incomplete information; complexity; high cost of occa-
sional control failures vs. the relative simplicity; lower direct costs and
greater reliability of conventional pesticide options including
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genetically modified crops; advisor conflict of interest; and inadequate
and declining investment in public sector research, especially for de-
velopment of techniques that do not lead to a product that can be sold
for a profit (Bottrell, 1979; Flint and Van den Bosch, 1981; Sorensen,
1993; Wolf, 1998; Sappington, 2014). Drivers of adoption of biological
approaches include improved worker and consumer safety, market
demand, additional modes of action and delayed resistance, and lower
regulatory approval costs and shorter timelines in many countries. In
many cases, the research agenda and adoption of integrated and or-
ganic techniques are driven by various stakeholders including, but not
limited to, farmers seeking risk reduction from pesticide use (European
Parliament, 2009; Lamichhane et al., 2018). The principles of sustain-
able pesticide use emerged from this context, including prevention and
suppression; monitoring; decision-making; non-chemical methods;
pesticide selection; reduced pesticide use; anti-resistance strategies; and
evaluation (Barzman et al., 2015).

Specific barriers to success with biological controls include lack of
natural enemies effective against many target pests; insufficient in-
formation available to farmers and other practitioners; complex appli-
cation techniques; selection of an ineffective organism for the target;
poor health or efficacy of biological controls due to inadequate or failed
production, storage or shipping practices; faulty release timing or re-
lease mechanics; cost of commercial production and registration; poor
fit with the predominant distribution channels for crop protection
products; rapidly changing ecological conditions; interference by un-
favorable weather, natural enemies of the biological control agent or
pesticide use; and interference with non-target organisms (Marrone,
2009; Flint, 2012; Heimpel and Mills, 2017; Lamichhane et al., 2018;
van Lenteren et al. 2018)

9. Ongoing organic-IPM forum

Researchers, producers, and agricultural professionals formed an
Organic and IPM working group in 2013 to share ideas on how best to
improve communication, understanding and outcomes among those
working on organic systems and IPM in agriculture and food production
(Baker et al., 2015).

The Working Group was formed following a roundtable convened in
November 2012 by the USDA Northeastern IPM Center and Red
Tomato, a Massachusetts-based food hub. The roundtable convened
national leaders of organic and IPM communities to discuss overlapping
challenges and identify opportunities for collaboration between the two
groups. The working group provides an ongoing platform for continued
exchange of ideas, research and innovative solutions to challenges fa-
cing both communities. The group consists of sixty individuals na-
tionwide, representing land grant universities, extension, private con-
sultants, non-profits, government agencies and practitioners. Group
members meet regularly by conference call, web and in-person meet-
ings, and have produced several publications.

The working group’s white paper explores shared interests and
tactics including IPM in both organic and conventional systems, as well
as the opportunities for synergistic partnerships between individuals
and organizations working in organic and IPM (Baker et al., 2015).
These communities have not interacted or collaborated to the extent
possible, and misperceptions and distrust of motives and methods have
worked to the detriment of their shared research, education and policy
priorities. The forum has been effective in improving mutual under-
standing and appreciation, and members have worked to educate others
to dispel misinformation and communicate the benefits of collaboration
through publications and presentations.

Research, development and outreach needs are increasing for or-
ganic and IPM as demand for production with lesser impacts increases,
often resulting in competition between organic and IPM researchers for
resources. There is a need for policy and market incentives to encourage
adoption of bio-intensive and organic practices to combat subsidies for
conventional agricultural practices. High farmer retirement rates

necessitate capacity building for a new generation of researchers and
extension professionals to continue development of pest management
solutions, including weed, disease and insect pests.

A synergistic partnership is key to addressing these shared chal-
lenges, as the needs of organic and IPM communities are not always
identical but are often complementary. The authors posit, “the colla-
boration between organic and IPM must become a public-private
partnership recognizing the need and opportunity for policy and market
forces to work together to address these challenges and achieve our
goals”. The white paper has been viewed more than 3000 times in 29
countries since its release.

Two years after the white paper’s publication, the working group
published a position paper entitled A Call for a Truly Sustainable
Agriculture (Kirschenmann et al., 2018), detailing the group’s updated
perspective on the current and future state of agriculture. The authors
suggest that truly sustainable agriculture systems are about our re-
lationships with nature and with ourselves, calling for a movement
from single tactic, therapeutic interventions to natural systems man-
agement. There is room for organic and IPM systems to learn from
nature and incorporate principles into agricultural systems that work
with nature instead of against it. Similarly, economic systems must
evolve in tandem with agricultural practices to enable these “truly
sustainable” practices to flourish. The working group has self-published
this paper and members have distributed it to their networks, inviting
feedback and additional discussion about the content.

The working group has several works in progress including a fact
sheet about regenerative agriculture in conjunction with the USDA
Regional IPM Centers to disseminate information to practitioners, re-
searchers, extension agents, and other stakeholders to improve under-
standing and awareness of the term and organizations advancing the
concept, and to encourage the adoption of regenerative practices.

In the process of preparing the White Paper, the Organic and IPM
Working Group identified several topics that are of interest for further
development. Foremost is a calculation of the benefits of organic and
integrated production, which requires more in-depth analysis than the
white paper or this article permits. Because of economic externalities,
not all the benefits of biological control are reflected in the value of the
crop. Producers who release mobile beneficial organisms such as insect
predators and parasitoids benefit other producers when those organ-
isms migrate to neighboring fields. The producer making the release is
not rewarded by the neighbors in most cases and may even have their
populations reduced by pesticide applications that drift onto their
property. As a result, collective action is often needed to make biolo-
gical or cultural practices effective on an ecosystem-wide basis (Baker,
1988). Chemical control also results in loss of biodiversity. Herbicide
drift has adverse impacts on non-target plant and arthropod species
(Egan et al., 2014). As a result, producers will under-invest in biological
control and over-invest in chemical control.

If the full costs and benefits of biological, cultural, and chemical
controls can be estimated, then mechanisms to compensate producers
who adopt biological control and reduce reliance on pesticides can be
proposed.

Some of the unresolved topics are relevant to the social sciences.
Adoption of integrated and organic techniques are behavioral choices
with cultural, economic, psychological, and social components. The
differences between how conventional, IPM, and organic producers
adopt biological control technologies deserves further exploration.

Even with price premiums for organic food, and organic crops
commanding higher profits than non-organic crops, non-organic
farmers are still reluctant to invest in the transition to organic. One
factor is the barrier of the three-year transition following the adoption
of organic practices. Many producers perceive that organic techniques
have higher costs and risks, and during the transition period, most
producers receive the going non-organic market price. The develop-
ment of a ‘transitional’ label might help offset some of the cost. The
extent to which IPM producers compete with organic producers, and to
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which an IPM label could be used by transitioning farmers has not re-
ceived attention.

10. Research, education, regulator, management priorities

The authors propose the following priorities:

a. An updated assessment of barriers to adoption of biological control:
Several surveys of barriers to biological control have been con-
ducted (Sheppard et al., 2006; Marrone, 2009), however an updated
assessment of these barriers should be performed to better inform
education, extension, research and policy work.

b. Increased education and extension about proven, ready-to-use bio-
logical control options: Education and extension through uni-
versities is a valuable component to increasing the adoption of
biological control and efforts such as the Midwest Institute for
Biological Control, connect students with specialists from various
regions to provide a broader perspective on biological control topics
(Illinois Natural History Survey, n.d.). Biological control companies
can also play a role in educating their consumers on efficacy and
other benefits of biological control products, such as residue and
resistance management and human and environmental safety
(Marrone, 2009).

c. Full cost and benefit comparisons, including external costs and
benefits, for biological vs. chemical controls: Cost-benefit compar-
isons involving the loss of populations or species, disruption of
community and ecosystem features are challenging, given that these
costs are not easily accounted for in dollars (Simberloff and Stiling,
1996) and the impacts of pesticides on human health and the en-
vironment are not considered in their price (van Lenteren et al.,
2018). A full comparison of costs and benefits will be an important
step to assess the impacts of biological control in comparison with
conventional pesticides. Existing methodologies to estimate eco-
nomic losses and costs of implementing biological controls in spe-
cific pest-crop scenarios can be applied to find the full or true cost of
agricultural production systems (Cullen, 1984; Jetter et al., 1997;
TEEB, 2010; UN FAO, 2012; Schader et al., 2014).

d. Public and private sector policies to encourage research, extension
and adoption of biological control, and reduction of reliance on
chemical control: Public policy reform can be a powerful way to
improve confidence and support for biological control. The reform
process should be publicly available and include representation
from a range of stakeholders (Strong and Pemberton, 2000). van
Lenteren et al. (2018) suggest fast-track, full-zone (vs. individual
state or country), and permanent registration (vs. requiring periodic
re-registration) will increase use of microbial biological control and
reduce product costs; and argue that a “conscious agriculture”
where all stakeholders in the production and consumption chain
will increase use of biological control by affording greater weight to
environmental and health concerns to balance profit maximization
and externalization of costs which dominate decisions in conven-
tional agriculture.

e. Increased and accelerated research and education on alternatives to
pesticides with documented negative impacts on the health of hu-
mans, animals, insects and the environment: Research, especially
with participatory methodologies, will continue to play an im-
portant role in the quest for reduced pesticide usage. Involving
farmers in the research process can help ensure risks associated with
alternatives to pesticides are considered in study design and im-
plementation. The dissemination of research results should also be
inclusive of farmers, advisors and other practitioners to ensure
sufficient understanding and adoption by these parties (Calliera and
L’Astorina, 2018; Lamichane et al., 2018).

f. Research, education and extension on interactions between and
successful integration of biological controls and organic-approved
pesticides, such as spinosad: Several studies explore the interactions

of biological controls and organic-approved pesticides (Biondi et al.,
2012), however additional research, education and extension should
be conducted to ensure viable use of biological controls in systems
using organic-approved pesticides.

g. Biological control in integrated weed management that reduces or
eliminates reliance on herbicides: A global catalog of biological
control agents and target weeds includes all deliberate releases
made through 2012 (Schwarzländer et al., 2018). This resource can
serve to inform additional research and education on effective bio-
logical control agents for use in integrated weed management.

h. Development of technology transfer models for biological control
option, in conjunction with the development of working models for
biological control successes: Various practices for exchanging bio-
logical control agents and information exist, including informal and
formal networks and databases of biological control agent releases,
and collaborative research projects with shared benefits for scien-
tists and practitioners, however room for improvement exists (van
Lenteren et al., 2018). Additional opportunities exist to apply spe-
cific models to understand and explain the effects of biological
control (Barlow et al., 2005).

i. Biological controls that will reduce or eliminate the use of the fol-
lowing pesticides: glyphosate, sulfur, copper, antibiotics, e.g.,
streptomycin, terramycin, neonicotinoids that are highly toxic to
bees, chlorpyrifos and other organophosphates.

Collaboration between organic and IPM communities can help ad-
vance biological control and address common priorities and goals.
Organic and IPM both utilize a systems approach to crop protection,
using inputs as a complementary, rather than primary, tactic for pest
management. Without support for effective and economically viable
alternatives to conventional pesticides and herbicides, the balance be-
tween this systems approach and input-based models will continue to
challenge organic and IPM producers.

11. Conclusions

IPM and organic are compatible approaches to agricultural pro-
duction that both rely upon biological control as one tool for producers
to use. Both reduce pesticide use, risks and adverse impacts.
Collaboration among those who work with the two sets of practices can
make progress towards the adoption of solutions to production chal-
lenges that would include biological control.

The Organic and IPM working group’s 2015 white paper (Baker
et al., 2015) provides several recommendations that are applicable to
the priorities identified above. These include:

a. Increased public and private support for long-term interdisciplinary
research that are relevant to both organic and IPM systems;

b. Expansion of outreach and collaboration between IPM and organic
proponents, with compensation to farmers who provide ecosystem
services such as augmentative releases of natural enemies and pro-
vision of natural habitat for natural enemies;

c. Elimination of subsidies and supports that reward unsustainable
practices that encourage inefficient applications of pesticides and
other farm chemicals; and

d. Enhanced incentives to develop, formulate, market and sell more
options for biological pest control that can be used by both organic
and IPM producers.

Above all, producers and researchers need to overcome their his-
toric reluctance to work together outside of their respective approaches.
Whatever differences remain, all stand to benefit from working together
for a sustainable and regenerative food system.
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